On the nonlinear development of the Langmuit modulational instability

Author:

Bingham R.,Lashmore C. N.

Abstract

We consider the nonlinear development of a long-wavelength finite-amplitude Langmuir wave. The wavenumber k0 of the initial Langmuir wave is chosen such that the three-wave decay is forbidden. We then describe the coupling of the initial Langmuir wave to Stokes and anti-Stokes Langmuir perturbations (with wavenumbers k0 ∓ ks) due to the presence of a low-frequency density perturbation of wavenumber ks. We then show that for a wide range of experimental conditions, the Stokes and anti-Stokes Langmuir waves are generated with wavenumbers well separated from k0. In order to describe the nonlinear evolution of these perturbations and the pump wave we make the static approximation for the ions and describe the high-frequency waves by three distinct wave envelopes. These coupled nonlinear differential equations are then solved exactly for a number of special cases. For the temporal evolution, we obtain periodic solutions and, when damping is included, we find a slow exponential decay of the amplitudes with a corresponding increase in the nonlinear period of oscillation. The stationary spatially varying solutions are shown to include four basic types of behaviour: periodic, solitary wave, phase jump and shock-like profiles. These latter solutions are of interest since they are obtained for zero dissipation and for a coherent wave interaction.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference18 articles.

1. Damped nonlinear Schrödinger equation

2. Handbook of Elliptic Integrals for Engineers and Scientists

3. Buchelnikova N. S. & Matochkin E. P. 1977 Proceedings of the Thirteenth International Conference on Phenomena in Ionized Gases, Berlin.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3