Author:
Zhelyazko I.,Murawski K.,Goossens M.,Nenovaki P.,Roberts B.
Abstract
In this paper we consider a set of nonlinear MHD equations that admits in a linear approximation a solution in the form of a slow sausage surface wave travelling along an isolated magnetic slab. For a wave of small but finite amplitude, we investigate how a slowly varying amplitude is modulated by nonlinear self-interactions. A stretching transformation shows that, at the lowest order of an asymptotic expansion, the original set of equations with appropriate boundary conditions (free interfaces) can be reduced to the cubic nonlinear Schrödinger equation, which determines the amplitude modulation. We study analytically and numerically the evolution of impulsively generated waves, showing a transition of the initial states into a train of solitons and periodic waves. The possibility of the existence of solitary waves in the solar atmosphere is also briefly discussed.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献