On resistive magnetohydrodynamic equilibria of an axisymmetric toroidal plasma with flow

Author:

THROUMOULOPOULOS G. N.,TASSO H.

Abstract

It is shown that the magnetohydrodynamic (MHD) equilibrium states of an axisymmetric toroidal plasma with finite resistivity and flows parallel to the magnetic field are governed by a second-order partial differential equation for the poloidal magnetic flux function ψ coupled with a Bernoulli-type equation for the plasma density (which are identical in form to the corresponding ideal MHD equilibrium equations) along with the relation Δ*ψ = Vcσ (here Δ* is the Grad–Schlüter–Shafranov operator, σ is the conductivity and Vc is the constant toroidal-loop voltage divided by 2π). In particular, for incompressible flows, the above-mentioned partial differential equation becomes elliptic and decouples from the Bernoulli equation [H. Tasso and G. N. Throumoulopoulos, Phys. Plasma5, 2378 (1998)]. For a conductivity of the form σ = σ(R, ψ) (where R is the distance from the axis of symmetry), several classes of analytic equilibria with incompressible flows can be constructed having qualitatively plausible σ profiles, i.e. profiles with σ taking a maximum value close to the magnetic axis and a minimum value on the plasma surface. For σ = σ(ψ), consideration of the relation Δ*ψ = Vc σ(ψ) in the vicinity of the magnetic axis leads then to a proof of the non-existence of either compressible or incompressible equilibria. This result can be extended to the more general case of non-parallel flows lying within the magnetic surfaces.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3