Fluctuation dynamos at finite correlation times using renewing flows

Author:

Bhat Pallavi,Subramanian Kandaswamy

Abstract

Fluctuation dynamos are generic to turbulent astrophysical systems. The only analytical model of the fluctuation dynamo, due to Kazantsev, assumes the velocity to be delta-correlated in time. This assumption breaks down for any realistic turbulent flow. We generalize the analytic model of fluctuation dynamos to include the effects of a finite correlation time, ${\it\tau}$, using renewing flows. The generalized evolution equation for the longitudinal correlation function $M_{L}$ leads to the standard Kazantsev equation in the ${\it\tau}\rightarrow 0$ limit, and extends it to the next order in ${\it\tau}$. We find that this evolution equation also involves third and fourth spatial derivatives of $M_{L}$, indicating that the evolution for finite-${\it\tau}$ will be non-local in general. In the perturbative case of small-${\it\tau}$ (or small Strouhal number), it can be recast using the Landau–Lifschitz approach, to one with at most second derivatives of $M_{L}$. Using both a scaling solution and the WKBJ approximation, we show that the dynamo growth rate is reduced when the correlation time is finite. Interestingly, to leading order in ${\it\tau}$, we show that the magnetic power spectrum preserves the Kazantsev form, $M(k)\propto k^{3/2}$, in the large-$k$ limit, independent of ${\it\tau}$.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3