High-beta turbulence in two-dimensional magnetohydrodynamics

Author:

Fyfe David,Montgomery David

Abstract

Incompressible turbulent flows are investigated in the framework of ideal magnetohydrodynamics. All the field quantities vary with only two spatial dimensions. Equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. In the geometry considered, the magnetic field and fluid velocity have variable x and y components, and all field quantities are independent of z. Three constants of the motion are found (one of them new) which survive the truncation in Fourier space and permit the construction of canonical distributions with three independent temperatures. Spectral densities are calculated. One of the more novel physical effects is the appearance of macroscopic structures involving long wavelength, self-generated, magnetic fields (‘magnetic islands’) for a wide range of initial parameters. Current filaments show a tendency toward consolidation in much the same way that vorticity filaments do in the guiding-centre plasma case. In the presence of finite dissipation, energy cascades to higher wavenumbers can be accompanied by vector potential cascades to lower wavenumbers, in much the same way as, in the fluid dynamic (Navier-Stokes) case, energy cascades to lower wavenumbers accompany enstrophy cascades to higher wavenumbers. It is suggested that the techniques may be relevant to theories of the magnetic dynamo problem and to the generation of megagauss magnetic fields when pellets are irradiated by lasers.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3