Abstract
The Green's function (or matrix) for a source of sinusoidal time dependence in an infinite homogeneous absorbing magneto-ionic plasma is written as a Fourier integral over wavenumber space. It is shown that this Fourier integral solution exists, and is unique as a generalized function. By extending the Fourier integral to complex wavenumbers, it is shown that the far-field expression for the Green's function may be written as an integral over sections of the dispersion surface, which in this case is a complex sub-manifold of the space of three complex variables. Use of the saddle-point method in two dimensions allows a further simplification of the far-field result. The matrix coefficients in the resulting expression are shown to represent a decomposition into modes. Corresponding results are also obtained for sources with spatial dependence, described by either functions of compact support or rapidly decreasing functions.
Publisher
Cambridge University Press (CUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献