A solvable model of Vlasov-kinetic plasma turbulence in Fourier–Hermite phase space

Author:

Adkins T.,Schekochihin A. A.

Abstract

A class of simple kinetic systems is considered, described by the one-dimensional Vlasov–Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan–Batchelor model of chaotic advection. The solution of the model is found in Fourier–Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier–Hermite spectrum is derived. Its asymptotics are $m^{-3/2}$ at low wavenumbers and high Hermite moments ($m$) and $m^{-1/2}k^{-2}$ at low Hermite moments and high wavenumbers ($k$). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference86 articles.

1. Fluid models of phase mixing, Landau damping, and nonlinear gyrokinetic dynamics

2. Smith, S. A. 1997 Dissipative closures for statistical moments, fluid moments, and subgrid scales in plasma turbulence. PhD thesis, Princeton University; http://w3.pppl.gov/hammett/sasmith/thesis.html.

3. Application of the Novikov-Furutsu theorem to the random acceleration problem

4. Collisionless Damping of Nonlinear Plasma Oscillations

5. Role of phase space structures in collisionless drift wave turbulence and impact on transport modeling

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase-space entropy cascade and irreversibility of stochastic heating in nearly collisionless plasma turbulence;Physical Review E;2024-06-14

2. Gyrokinetic moment-based simulations of the Dimits shift;Journal of Plasma Physics;2023-12

3. Radial Transport in the Earth’s Radiation Belts: Linear, Quasi-linear, and Higher-order Processes;The Astrophysical Journal Supplement Series;2023-11-24

4. Quantum Algorithm for the Linear Vlasov Equation with Collisions;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

5. Dimensional measures of generalized entropy;Journal of Physics A: Mathematical and Theoretical;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3