Abstract
A tensor conductivity model for a fully ionized, two-temperature, cylindrical and diffuse pinch is constructed and its properties analyzed under energy and momentum equilibria conditions. The set of Braginskii's classical two-temperature tensor transport equations are solved for the strict steady state and the radial equilibria profiles of the relevant parameters produced. Unlike the scalar conductivity model (part 1 of this series) tensor coefficients yield profiles with the appropriate ideal boundary conditions, namely zero pressure and temperatures at the plasma radius. Furthermore, spatial oscillations of the electron temperature only occur for extreme values of the free parameters.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献