A steady-state model of current filamentation caused by the electrothermal instability in a fully ionized magnetized plasma

Author:

Haines M. G.,Marsh F.

Abstract

A magnetically confined two-fluid plasma is considered in which the Ohmic heating of the electrons by a current driven parallel to an applied magnetic field is balanced by bremsstrahlung and equipartition to the ions. It is found that for a steady state the applied electric field must be below a critical value which in absence of bremsstrahlung is given by where the electrical conductivity is and the total pressure is p. Under this condition it is found that there are two /Futions for Te/Ti which satisfy the steady electron energy balance equation in a homogeneous, fully ionized plasma. One of these /Futions always has values above the critical value of Te/Ti (= 132 in absence of bremsstrahlung) for the onset of the electrothermal instability in a fully ionized gas. Inclusion of electron thermal conduction transverse to the magnetic field (with Hall parameter ) yields a wavelength for maximum growth of the instability of about , where ae is the electron Larmor radius. The steady non linear profiles showing current filamentation have been calculated. Runaway electrons and ion-acoustic instabilities can occur in the spatial maximum of the current density and electron temperature. Inclusion of bremsstrahlung loss reduces the value of Te/Ti for the onset of the instability, and at Te = Ti yields a maximum ion temperature obtainable by Ohmic heating in a stable plasma.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3