A theoretical investigation of banded chorus

Author:

Nunn David

Abstract

This paper is a computational study of nonlinear resonant particle trajectories in wave fields consisting of an array of narrow-band waves of closely spaced frequencies and wavenumbers. It looks at two analogous systems, cyclotron resonance with a whistler wavefield and Landau resonance with an electrostatic wave field. It is found that the wave array is able to trap particles in much the same way as a single mode. Inhomogeneity plays a vital role by causing the energy of trapped particles to change.The nonlinear resonant particle current is such as to preserve the modal structure of the wave field, and it does not change the frequency of an individual mode. Power distribution amongst the modes is far from even. Most of the energy goes into the mode at one end of the array, depending on the direction of the inhomogeneity. Also, nonlinear resonant particle excitation of a broad band signal was found to cause spectral structuring to develop automatically.The theory was applied to one of Coroniti's FTRS analyses of banded chorus elements. The observed spectral behaviour closely accorded with the computational results. The numbers involved fitted the theory very well, and strongly suggested that nonlinear cyclotron resonant particle excitation is the mechanism for banded chorus.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3