Isotope dependence of energy, momentum and particle confinement in tokamaks

Author:

Weisen H.ORCID,Maggi C. F.,Oberparleiter M.,Casson F. J.,Camenen Y.,Menmuir S.,Horvath L.,Auriemma F.,Bache T. W.,Bonanomi N.,Chankin A.,Delabie E.,Frassinetti L.,Garcia J.,Giroud C.,King D.,Lorenzini R.,Marin M.,Schneider P. A.,Siren P.,Varje J.,Viezzer E.,

Abstract

The isotope dependence of plasma transport will have a significant impact on the performance of future D-T experiments in JET and ITER and eventually on the fusion gain and economics of future reactors. In preparation for future D-T operation on JET, dedicated experiments and comprehensive transport analyses were performed in H, D and H-D mixed plasmas. The analysis of the data has demonstrated an unexpectedly strong and favourable dependence of the global confinement of energy, momentum and particles in ELMy H-mode plasmas on the atomic mass of the main ion species, the energy confinement time scaling as ${\tau _E}\sim {A^{0.5}}$ (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045; JET Team, Nucl. Fusion, vol. 39, 1999, pp. 1227–1244), i.e. opposite to the expectations based only on local gyro-Bohm (GB) scaling, ${\tau _E}\sim {A^{ - 0.5}}$ , and stronger than in the commonly used H-mode scaling for the energy confinement (Saibene et al., Nucl. Fusion, vol. 39, 1999, 1133; ITER Physics Basis, Nucl. Fusion, vol. 39, 1999, 2175). The scaling of momentum transport and particle confinement with isotope mass is very similar to that of energy transport. Nonlinear local GENE gyrokinetic analysis shows that the observed anti-GB heat flux is accounted for if collisions, E × B shear and plasma dilution with low-Z impurities (9Be) are included in the analysis (E and B are, respectively the electric and magnetic fields). For L-mode plasmas a weaker positive isotope scaling ${\tau _E}\sim {A^{0.14}}$ has been found in JET (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045), similar to ITER97-L scaling (Kaye et al., Nucl. Fusion, vol. 37, 1997, 1303). Flux-driven quasi-linear gyrofluid calculations using JETTO-TGLF in L-mode show that local GB scaling is not followed when stiff transport (as is generally the case for ion temperature gradient modes) is combined with an imposed boundary condition taken from the experiment, in this case predicting no isotope dependence. A dimensionless identity plasma pair in hydrogen and deuterium L-mode plasmas has demonstrated scale invariance, confirming that core transport physics is governed, as expected, by the 4 dimensionless parameters ρ*, ν*, β, q (normalised ion Larmor radius, collisionality, plasma pressure and safety factor) consistently with global quasi-linear gyrokinetic TGLF calculations (Maggi et al., Nucl. Fusion, vol. 59, 2019, 076028). We compare findings in JET with those in different devices and discuss the possible reasons for the different isotope scalings reported from different devices. The diversity of observations suggests that the differences may result not only from differences affecting the core, e.g. heating schemes, but are to a large part due to differences in device-specific edge and wall conditions, pointing to the importance of better understanding and controlling pedestal and edge processes.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3