Abstract
We consider the following problem: how far, in what sense and with what practical applications might the analysis of the quasi-static evolution of a (strictly) dissipative plasma column in vacuum be carried out independently of computational means (however necessary at a later stage) in the framework of a conveniently simplified, yet significant, mathematical model. We show that the the (two-region) evolution problem of concern can be reduced to the (numerical) solution of just three nonlinear non-autonomous evolution equations in three unknowns, sayẊ=Ẋ(X,t), withX≡ (X1,X2,X3), where the corresponding mapping (X,t)↣Ẋcan be made effective at the cost of inverting a non-canonical Fredholm operator of the second kind that is completely defined for the givenX=X(t) andt. The assumption of sufficiently slow evolution allows us to work with the static-equilibrium momentum equation. Under axial (or cylindrical) symmetry, we know that the ‘radial’ equilibrium condition leads to a semi-linear elliptic equation in the meridional (or (x, y)) plane. The Fredholm operator arises from the inversion of the Laplacian appearing in that equation.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献