Abstract
The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries that mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a $10~\text{m}^{3}$, fully ionized, magnetic-field-free plasma in a spherical geometry. Plasma parameters of $T_{e}\approx 5$ to $20~\text{eV}$ and $n_{e}\approx 10^{11}$ to $5\times 10^{12}~\text{cm}^{-3}$ provide an ideal testbed for a range of astrophysical experiments, including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds and more. This article describes the capabilities of WiPAL, along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.
Publisher
Cambridge University Press (CUP)
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献