Dynamo theories

Author:

Rincon FrançoisORCID

Abstract

These lecture notes are based on a tutorial given in 2017 at a plasma physics winter school in Les Houches. Their aim is to provide a self-contained graduate-student level introduction to the theory and modelling of the dynamo effect in turbulent fluids and plasmas, blended with a review of current research in the field. The primary focus is on the physical and mathematical concepts underlying different (turbulent) branches of dynamo theory, with some astrophysical, geophysical and experimental contexts disseminated throughout the document. The text begins with an introduction to the rationale, observational and historical roots of the subject, and to the basic concepts of magnetohydrodynamics relevant to dynamo theory. The next two sections discuss the fundamental phenomenological and mathematical aspects of (linear and nonlinear) small- and large-scale magnetohydrodynamic (MHD) dynamos. These sections are complemented by an overview of a selection of current active research topics in the field, including the numerical modelling of the geo- and solar dynamos, shear dynamos driven by turbulence with zero net helicity and MHD-instability-driven dynamos such as the magnetorotational dynamo. The difficult problem of a unified, self-consistent statistical treatment of small- and large-scale dynamos at large magnetic Reynolds numbers is also discussed throughout the text. Finally, an excursion is made into the relatively new but increasingly popular realm of magnetic-field generation in weakly collisional plasmas. A short discussion of the outlook and challenges for the future of the field concludes the presentation.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3