Stability of Doublet III plasmas against axisymmetric resistive MHD modes

Author:

McLain Fred W.,Jensen Torkil H.

Abstract

Stability of doublet plasmas in the Doublet III device against resistive axisymmetric MHD modes has been studied. The real characteristics of the device were modelled as accurately as possible. Thus, for example, the actual toroidal geometry was used, the field shaping coils (F-coils) which surround the plasma were included, and the location of real limiters was incorporated for determination of the plasma surface. We have used two parameters to model the plasma current distribution and the equilibrium boundary conditions: one describes the flatness of the current profile, the other describes the fraction of the poloidal plasma flux contained within the separatrix. Thus we have determined stability as a function of these two parameters. If the fluxes at the F-coils are kept fixed, there are stable as well as unstable regimes in this two-dimensional parameter space. If the F-coil fluxes are controlled to imitate the presence of virtual F-coils with fixed fluxes located closer to the plasma, it is possible to stabilize the plasma. This stabilization is discussed in the paper and numerical examples are given. Finally, the relationship between the results of this paper and experimental observations from Doublet III is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference7 articles.

1. Low frequency response of a resistive plasma to axially independent or axisymmetric perturbations

2. Buneman O. 1969 Institute for Plasma Research Report SUIPR-294.

3. Callis R. W. 1976 General Atomic Company Report GA-A13996.

4. Numerical parameter study of stability against resistive axisymmetric modes for doublets

5. McClain F. W. & Brown B. B. 1977 General Atomic Company Report GA-A14490.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3