Centers for Disease Control and Prevention Participation in Cobalt Magnet National-Level Radiological Exercise

Author:

Ansari ArminORCID,Salame-Alfie Adela,Dopson Stephanie AnneORCID

Abstract

Abstract Since September 11, 2001, the Centers for Disease Control and Prevention (CDC) has increased efforts to prepare the agency and public health partners for response to potential nuclear/radiological disasters. During the week of May 16–20, 2022, the CDC participated in a national-level radiological emergency exercise, Cobalt Magnet 22 (CM22). The exercise scenario consisted of a notional, failed search mission for a radiological dispersal device (RDD, “dirty bomb”), followed by its explosion during a public event in a large US city. Testing radioanalytical laboratory capabilities during a nuclear/radiological incident was an exercise objective, and developing clear messaging on low-dose exposure and long-term health concerns was a primary output of the exercise. The CDC practiced its activation protocols, exercised the establishment of its updated Incident Management System structure for radiation emergencies, and identified critical staffing needs for this type of response.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health

Reference8 articles.

1. Geospatial Analysis in Responding to a Nuclear Detonation Scenario in NYC: The Gotham Shield Exercise

2. Developing a Radiation-Savvy Public Health Workforce

3. 6. Nuclear/Radiological Incident Annex to the Response and Recovery Federal Interagency Operations Plan. U.S. Department of Homeland Security. Published 2016. Accessed August 21, 2023. https://www.fema.gov/pdf/emergency/nrf/nrf_nuclearradiologicalincidentannex.pdf

4. 1. U.S. Centers for Disease Control and Prevention, Radiation Emergencies. CDC. Accessed December 11, 2022. https://www.cdc.gov/nceh/radiation/emergencies/index.htm

5. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination From Intakes of Radionuclides Part I

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3