Understanding migrants in COVID-19 counting: Rethinking the data-(in)visibility nexus

Author:

Pelizza AnnalisaORCID,Milan StefaniaORCID,Lausberg Yoren

Abstract

Abstract The COVID-19 pandemic confronts society with a dilemma between (in)visibility, security, and care. While invisibility might be sought by unregistered and undocumented people, being counted and thus visible during a pandemic is a precondition of existence and care. This article asks whether and how unregistered populations like undocumented migrants should be included in statistics and other “counting” exercises devised to track virus diffusion and its impact. In particular, the paper explores how such inclusion can be just, given that for unregistered people visibility is often associated with surveillance. It also reflects on how policymaking can act upon the relationship between data, visibility, and populations in pragmatic terms. Conversing with science and technology studies and critical data studies, the paper frames the dilemma between (in)visibility and care as an issue of sociotechnical nature and identifies four criteria linked to the sociotechnical characteristics of the data infrastructure enabling visibility. It surveys “counting” initiatives targeting unregistered and undocumented populations undertaken by European countries in the aftermath of the pandemic, and illustrates the medical, economic, and social consequences of invisibility. On the basis of our analysis, we outline four scenarios that articulate the visibility/invisibility binary in novel, nuanced terms, and identify in the “de facto inclusion” scenario the best option for both migrants and the surrounding communities. Finally, we offer policy recommendations to avoid surveillance and overreach and promote instead a more just “de facto” civil inclusion of undocumented populations.

Funder

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference79 articles.

1. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010

2. Waldersee, V (2020) Portugal to treat migrants as residents during coronavirus crisis. Reuters. Available at https://www.reuters.com/article/us-health-coronavirus-portugal/portugal-to-treat-migrants-as-residents-during-coronavirus-crisis-idUSKBN21F0N7. Last accessed on August 1st, 2021.

3. McIntyre, N and Duncan, P (2020) Care homes and coronavirus: why we don’t know the true UK death toll. The Guardian. Available at https://www.theguardian.com/world/2020/apr/14/care-homes-coronavirus-why-we-dont-know-true-uk-death-toll. Last accessed on August 1st, 2021.

4. Bulman, M (2020) Undocumented migrants dying of coronavirus because they’re too afraid to seek help, MPs and charities warn. The Independent. Available at https://www.independent.co.uk/news/uk/home-news/coronavirus-undocumented-migrants-deaths-cases-nhs-matt-hancock-a9470581.html. Last accessed on August 1st, 2021.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3