Using mobile big data to support emergency preparedness and address economically vulnerable communities during the COVID-19 pandemic in Nigeria

Author:

Gilbert JoanneORCID,Adekanmbi Olubayo,Harrison Charlie

Abstract

Abstract With the declaration of the coronavirus disease 2019 (COVID-19) pandemic in Nigeria in 2020, the Nigeria Governors’ Forum (NGF) instigated a collaboration with MTN Nigeria to develop data-driven insights, using mobile big data (MBD) and other data sources, to shape the planning and response to the pandemic. First, a model was developed to predict the worst-case scenario for infections in each state. This was used to support state-level health committees to make local resource planning decisions. Next, as containment interventions resulted in subsistence/daily paid workers losing their income and ability to buy essential food supplies, NGF and MTN agreed a second phase of activity, to develop insights to understand the population clusters at greatest socioeconomic risk from the impact of the pandemic. This insight was used to promote available financial relief to the economically vulnerable population clusters in Lagos state via the HelpNow crowdfunding initiative. This article discusses how anonymized and aggregated mobile network data (MBD), combined with other data sources, were used to create valuable insights and inform the government, and private business, response to the pandemic in Nigeria. Finally, we discuss lessons learnt. Firstly, how a collaboration with, and support from, the regulator enabled MTN to deliver critical insights at a national scale. Secondly, how the Nigeria Data Protection Regulation and the GSMA COVID-19 Privacy Guidelines provided an initial framework to open the discussion and define the approach. Thirdly, why stakeholder management is critical to the understanding, and application, of insights. Fourthly, how existing relationships ease new project collaborations. Finally, how MTN is developing future preparedness by creating a team that is focused on developing data-driven insights for social good.

Funder

UK Foreign Commonwealth and Development Office

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference24 articles.

1. Demographic science aids in understanding the spread and fatality rates of COVID-19;Dowd;Proceedings of the National Academy of Sciences,2020

2. Partners, N (2020) COVID-19: Oando Employees Raise Over N25 Million, Feed 10 Communities Across Lagos. [Online]. Nairametrics. Available at https://nairametrics.com/2020/05/22/covid-19-oando-employees-raise-over-n25-million-feed-10-communities-across-lagos/ (accessed 28 October 2020).

3. HelpNow (n.d.) Homepage HelpNow. [Online]. Available at https://helpnow.ng (accessed 21 May 2021).

4. MTN Online (2021) Y’ello Hope—MTN Online. [Online]. Available at https://www.mtnonline.com/covid-19/yello-hope/ (accessed 19 May 2021).

5. Ayoade, O (2020) The Economic Repercussion of Coronavirus Pandemic on Nigerians. Available at https://pulitzercenter.org/reporting/economic-repercussion-coronavirus-pandemic-nigerians (accessed 25 September 2020).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3