Abstract
Abstract
We invoke the Bernstein–Gel
$'$
fand–Gel
$'$
fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.
Publisher
Cambridge University Press (CUP)
Reference19 articles.
1. Murphy’s law in algebraic geometry: Badly-behaved deformation spaces;Vakil;Invent. Math.,2006
2. Algebraic vector bundles on Pn and problems of linear algebra;Bernšteĭn;Funktsional. Anal. i Prilozhen.,1978
3. Koszul cohomology and the geometry of projective varieties;Green;J. Differential Geom.,1984a
4. Virtual resolutions for a product of projective spaces;Berkesch;Algebr. Geom.,2020