Abstract
We consider the uncovered set (i.e. the complement of the union of growing random intervals) in the one-dimensional Johnson-Mehl model. Let S(z,L) be the number of components of this set at time z > 0 which intersect (0, L]. An explicit bound is known for the total variation distance between the distribution of S(z,L) and a Poisson distribution, but due to clumping of the components the bound can be rather large. We here give a bound for the total variation distance between the distribution of S(z,L) and a simple compound Poisson distribution (a Pólya-Aeppli distribution). The bound is derived by interpreting S(z,L) as the number of visits to a ‘rare’ set by a Markov chain, and applying results on compound Poisson approximation for Markov chains by Erhardsson. It is shown that under a mild condition, if z→∞ and L→∞ in a proper fashion, then both the Pólya-Aeppli and the Poisson approximation error bounds converge to 0, but the convergence of the former is much faster.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献