Keeping a satellite aloft: two finite fuel stochastic control models

Author:

Jacka S. D.

Abstract

We consider two models for the control of a satellite–in the first, fuel is expended in a linear fashion to move a satellite following a diffusion–where the aim is to keep the satellite above a critical level for as long as possible (or indeed to reach a higher, ‘safe’ level). Under suitable assumptions for the drift and diffusion coefficients, it is shown that the stochastic maximum of the time to fall below the critical level is attained by a policy which imposes a reflecting boundary at the critical level until the fuel is exhausted and jumps the satellite directly to the safe level if this is ever possible. In the second model, there is a nonlinear response to the expenditure of fuel, and no safe level. It is shown that the optimal policy for maximizing the expected discounted time for the satellite to crash is similar, in that equal packets of fuel are used to jump the satellite upwards each time it reaches the critical level.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3