Abstract
We consider two models for the control of a satellite–in the first, fuel is expended in a linear fashion to move a satellite following a diffusion–where the aim is to keep the satellite above a critical level for as long as possible (or indeed to reach a higher, ‘safe’ level). Under suitable assumptions for the drift and diffusion coefficients, it is shown that the stochastic maximum of the time to fall below the critical level is attained by a policy which imposes a reflecting boundary at the critical level until the fuel is exhausted and jumps the satellite directly to the safe level if this is ever possible. In the second model, there is a nonlinear response to the expenditure of fuel, and no safe level. It is shown that the optimal policy for maximizing the expected discounted time for the satellite to crash is similar, in that equal packets of fuel are used to jump the satellite upwards each time it reaches the critical level.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献