Abstract
Here we consider the Kohonen algorithm with a constant learning rate as a Markov process evolving in a topological space. Despite the fact that the algorithm is not weak Feller, we show that it is a T-chain, regardless of the dimensionalities of both data space and network and the special shape of the neighborhood function. In addition for the practically important case of the multi-dimensional setting, it is shown that the chain is irreducible and aperiodic. We show that these imply the validity of Doeblin's condition, which in turn ensures the convergence in distribution of the process to an invariant probability measure with a geometric rate. Furthermore, it is shown that the process is positive Harris recurrent, which enables us to use statistical devices to measure the centrality and variability of the invariant probability measure. Our results cover a wide class of neighborhood functions.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献