Modelling the flow of coalescing data streams through a processor

Author:

Anantharam V.

Abstract

In a data processing network, two data streams A and B arrive at a node independently at the same Poisson rate λ. Service at exponential rate µ can take place iff there is at least one of each of A and B present. The output is the combined processed data AB. We consider models of this situation with finite buffers, with infinite buffers and with finite buffers for the excess of each input type over the other. We apply the filtering theory for point process functionals of a Markov chain to study whether the output flow is Poisson in equilibrium. The motivation is to examine, if the output is to subsequently be processed by a queueing system, whether it can be treated as an independent Poisson input to that system. A result of independent interest is that a subset of transitions of a countable-state Markov process does not yield a Poisson process when counted, if the rate matrix of counted transitions is nilpotent, and we prove a generalization of Pakes' lemma for countable-state Markov chains.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3