Author:
Chen May-Ru,Hsiau Shoou-Ren
Abstract
In a two-person red-and-black game, each player holds an integral amount of chips. At each stage of the game, each player can bet any integral amount in his possession, winning the chips of his opponent with a probability which is a function of the ratio of his bet to the sum of both players' bets and is called a win probability function. Both players seek to maximize the probability of winning the entire fortune of his opponent. In this paper we propose two new models. In the first model, at each stage, there is a positive probability that two players exchange their bets. In the second model, the win probability functions are stage dependent. In both models, we obtain suitable conditions on the win probability functions such that it is a Nash equilibrium for the subfair player to play boldly and for the superfair player to play timidly.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. OPTIMAL STRATEGY IN “GUESS WHO?”: BEYOND BINARY SEARCH;Probability in the Engineering and Informational Sciences;2016-06-28