Abstract
We consider an increasing supercritical branching process in a random environment and obtain bounds on the Laplace transform and distribution function of the limiting random variable. There are two possibilities that can be distinguished depending on the nature of the component distributions of the environment. If the minimum family size of each is 1, the growth will be as a power depending on a parameter α. If the minimum family sizes of some are greater than 1, it will be exponential, depending on a parameter γ. We obtain bounds on the distribution function analogous to those found for the simple Galton-Watson case. It is not possible to obtain exact estimates and we are only able to obtain bounds to within ε of the parameters.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献