Abstract
For the age-dependent branching process with arbitrary state space let M(x, t, A) be the expected number of individuals alive at time t with states in A given an initial individual at x. Subject to various conditions it is shown that M(x, t, A)e–at
converges to a non-trivial limit where α is the Malthusian parameter (α = 0 for the critical case, and is negative in the subcritical case). The method of proof also yields rates of convergence.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability