Hitting Times and the Running Maximum of Markovian Growth-Collapse Processes

Author:

Löpker Andreas,Stadje Wolfgang

Abstract

We consider the level hitting times τy= inf{t≥ 0 |Xt=y} and the running maximum processMt= sup{Xs| 0 ≤st} of a growth-collapse process (Xt)t≥0, defined as a [0, ∞)-valued Markov process that grows linearly between random ‘collapse’ times at which downward jumps with state-dependent distributions occur. We show how the moments and the Laplace transform of τycan be determined in terms of the extended generator ofXtand give a power series expansion of the reciprocal of Eesτy. We prove asymptotic results for τyandMt: for example, ifm(y) = Eτyis of rapid variation thenMt/m-1(t) →w1 ast→ ∞, wherem-1is the inverse function ofm, while ifm(y) is of regular variation with indexa∈ (0, ∞) andXtis ergodic, thenMt/m-1(t) converges weakly to a Fréchet distribution with exponenta. In several special cases we provide explicit formulae.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unified approach for solving exit problems for additive-increase and multiplicative-decrease processes;Journal of Applied Probability;2022-08-30

2. Growth-collapse effects applied to cash management and queues;Queueing Systems;2022-04

3. Asymmetric Jump-Telegraph Processes;Telegraph Processes and Option Pricing;2022

4. On the overflow time of a fluid model;Mathematical Methods of Operations Research;2016-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3