Taylor bubble moving in a flowing liquid in vertical channel: transition from symmetric to asymmetric shape

Author:

FIGUEROA-ESPINOZA BERNARDO,FABRE JEAN

Abstract

The velocity and shape of Taylor bubbles moving in a vertical channel in a Poiseuille liquid flow were studied for the inertial regime, characterized by large Reynolds numbers. Numerical experiments were carried out for positive (upward) and negative (downward) liquid mean velocity. Previous investigations in tube have reported that for upward flow the bubble is symmetric and its velocity follows the law of Nicklin, whereas for certain downward flow conditions the symmetry is broken and the bubble rises appreciably faster. To study the bubble motion and to identify the existence of a transition, a two-dimensional numerical code that solves the Navier–Stokes equations (through a volume of fluid implementation) was used to obtain the bubble shape and the rise velocity for different liquid mean velocities. A reference frame located at the bubble tip and an irregular grid were implemented to allow long simulation times without an excessively large numerical domain. It was observed that whenever the mean liquid velocity exceeded some critical value, bubbles adopted a symmetric final shape even though their initial shape was asymmetric. Conversely, if the mean liquid velocity was smaller than the critical value, a transition to a non-symmetric shape occurred, along with a correspondingly faster velocity. It was also found that surface tension has a stabilizing effect on the transition.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference35 articles.

1. CFD modelling of slug flow inside square capillaries

2. Volume of fluid (VOF) method for the dynamics of free boundaries

3. A boundary element method for calculating the shape and velocity of two-dimensional long bubble in stagnant and flowing liquid

4. Bonometti T. 2003 Développement d'une méthode de simulation d'écoulements à bulles et à gouttes. Thesis, INP Toulouse, France.

5. The velocity and shape of 2D long bubbles in inclined channels or in vertical tubes. Part I. In a stagnant liquid;Ha Ngoc;Multiphase Sci. Technol.,2004

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3