Probability density function approach for modelling multi-phase flow with ganglia in porous media

Author:

Tyagi Manav,Jenny Patrick

Abstract

AbstractA probabilistic approach to model macroscopic behaviour of non-wetting-phase ganglia or blobs in multi-phase flow through porous media is proposed. The key idea is to consider a set of stochastic Markov processes that can mimic the microscopic multi-phase dynamics. These processes are characterized by equilibrium probability density functions (PDFs) and correlation times, which can be obtained from micro-scale simulation studies or experiments. A Lagrangian viewpoint is adopted, where stochastic particles represent infinitesimal fluid elements and evolve in the physical and probability space. Ganglion mobilization and trapping are modelled by a two-state jump process with transition probabilities given as functions of ganglion size. Coalescence and breakup of ganglia influence the ganglion size distribution, which is modelled by a Langevin type equation. The joint probability density function (JPDF) of the chosen stochastic variables is governed by a high-dimensional Chapman–Kolmogorov equation. This equation can be used to derive moment (e.g. saturation, mean mobility etc.) transport equations, which in general do not form a closed system. However, in some special cases, which arise in the limit of one time scale being smaller or larger than the others, a closed set of moment transport equations can be obtained. For slowly varying and quasi-uniform flows, the saturation transport equation appears in closed form with the mean mobility fully determined, if the equilibrium PDFs are known. Furthermore, it is shown how statistical parameters such as mobilization and trapping rates and equilibrium PDFs can be obtained from the birth–death type approach, in which ganglia breakup and coalescence are explicitly considered. A two-equation transport model (one equation for the total saturation and one for the trapped saturation) is obtained in the limit of very fast coalescence and breakup processes. This model is employed to mimic hysteresis in relative permeability–saturation curves; a well known phenomenon observed in the successive processes of imbibition and drainage. For the general case, the JPDF-equation is solved using the stochastic particle method, which was proposed in our previous paper (Tyagi et al. J. Comput. Phys. 227, 2008, 6696–6714). Several one- and two-dimensional numerical simulation results are presented to show the influence of correlation times on the averaged macroscopic flow behaviour.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3