Induced flow due to blowing and suction flow control: an analysis of transpiration

Author:

Woodcock James D.,Sader John E.,Marusic Ivan

Abstract

AbstractIt has previously been demonstrated that the drag experienced by a Poiseuille flow in a channel can be reduced by subjecting the flow to a dynamic regime of blowing and suction at the walls of the channel (also known as ‘transpiration’). Furthermore, it has been found to be possible to induce a ‘bulk flow’, or steady motion through the channel, via transpiration alone. In this work, we derive explicit asymptotic expressions for the induced bulk flow via a perturbation analysis. From this we gain insight into the physical mechanisms at work within the flow. The boundary conditions used are of travelling sine waves at either wall, which may differ in amplitude and phase. Here it is demonstrated that the induced bulk flow results from the effect of convection. We find that the most effective arrangement for inducing a bulk flow is that in which the boundary conditions at either wall are equal in magnitude and opposite in sign. We also show that, for the bulk flow induced to be non-negligible, the wavelength of the boundary condition should be comparable to, or greater than, the height of the channel. Moreover, we derive the optimal frequency of oscillation, for maximising the induced bulk flow, under such boundary conditions. The asymptotic behaviour of the bulk flow is detailed within the conclusion. It is found, under certain caveats, that if the amplitude of the boundary condition is too great, the bulk flow induced will become dependent only upon the speed at which the boundary condition travels along the walls of the channel. We propose the conjecture that for all similar flows, if the magnitude of the transpiration is sufficiently great, the bulk flow will depend only upon the speed of the boundary condition.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3