Direct numerical simulation of the flow over a sphere at Re = 3700

Author:

RODRIGUEZ IVETTE,BORELL RICARD,LEHMKUHL ORIOL,PEREZ SEGARRA CARLOS D.,OLIVA ASSENSI

Abstract

The direct numerical simulation of the flow over a sphere is performed. The computations are carried out in the sub-critical regime at Re = 3700 (based on the free-stream velocity and the sphere diameter). A parallel unstructured symmetry-preserving formulation is used for simulating the flow. At this Reynolds number, flow separates laminarly near the equator of the sphere and transition to turbulence occurs in the separated shear layer. The vortices formed are shed at a large-scale frequency, St = 0.215, and at random azimuthal locations in the shear layer, giving a helical-like appearance to the wake. The main features of the flow including the power spectra of a set of selected monitoring probes at different positions in the wake of the sphere are described and discussed in detail. In addition, a large number of turbulence statistics are computed and compared with previous experimental and numerical data at comparable Reynolds numbers. Particular attention is devoted to assessing the prediction of the mean flow parameters, such as wall-pressure distribution, skin friction, drag coefficient, among others, in order to provide reliable data for testing and developing statistical turbulence models. In addition to the presented results, the capability of the methodology used on unstructured grids for accurately solving flows in complex geometries is also pointed out.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3