Numerical investigation and modelling of acoustically excited flow through a circular orifice backed by a hexagonal cavity

Author:

Zhang Qi,Bodony Daniel J.

Abstract

AbstractResolved simulations of the sound-induced flow through a circular orifice with a 0.99 mm diameter are examined. The orifice is backed by a hexagonal cavity and is a local model for acoustic liners commonly used for aeroengine noise reduction. The simulation data identify the role the orifice wall boundary layers play in determining the orifice discharge coefficient which, in time-domain models, is an important indicator of nonlinearity. It is observed that when the liner behaviour is not well described by linear models, the orifice boundary layers contain secondary vorticity generated from its separation from the corner on the high-pressure side of the orifice. Quantitative comparisons of the simulation-predicted impedance match available data for incident sound of 130 dB amplitude at frequencies from 1.5 to 3.0 kHz. At amplitudes of 140–160 dB, the simulation impedance is in agreement with analytical predictions when using simulation-measured quantities, including the discharge coefficient and root-mean-square velocity through the orifice, although no experimental data for this liner exist at these conditions. The simulation data are used to develop two time-domain models for the acoustic impedance wherein the velocity profile through the orifice is modelled as the product of the fluid velocity and a presumed radial shape,$\dot {\xi } V(r)$. The models perform well, predicting the in-orifice velocity and pressure, and the impedance, except for the most nonlinear cases where it is seen that the assumed shape$V(r)$can affect the backplate pressure predictions. These results suggest that future time-domain models that take the velocity profile into account, by modelling the boundary layer thickness and assuming a velocity profile shape, may be successful in predicting the nonlinear response of the liner.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3