Modelling of block-scale macrodispersion as a random function

Author:

DE BARROS FELIPE P. J.,RUBIN YORAM

Abstract

Numerical modelling of solute dispersion in natural heterogeneous porous media is facing several challenges. Amongst these we highlight the challenge of accounting for high-frequency variability that is filtered out by homogenization at the subgrid scale and the uncertainty in the dispersive flux for transport under non-ergodic conditions. These two effects when combined lead to inaccurate representation of the dispersive fluxes. We propose to compensate for this deficiency by defining a block-scale dispersion tensor and modelling it as a random space function ℳij. The derived dispersion tensor is a function of several length scales and time. Grid blocks will be assigned dispersion coefficients generated from the ℳijdistribution. We will show the dependence of ℳijon the spatial variability of the conductivity field, on the contaminant source size, on the travel time and on the grid-block scale. For an ergodic source, a statistically uniform conductivity field and very large grid blocks, ℳijis equal to the macrodispersion coefficients proposed by Dagan (J. Fluid Mech., vol. 145, 1984, p. 151) with zero variance. For an ergodic source and non-uniform conductivity field with a finite-size grid block, ℳijapproaches the model proposed by Rubinet al. (J. Fluid Mech., vol. 395, 1999, p. 161). In both cases, ℳijis defined by its mean value with zero variance. ℳijis subject to uncertainty when the source is non-ergodic and when the grid block is defined by a finite scale. When the grid-block scale approaches zero, which means that the spatial variability is captured completely on the numerical grid, ℳijapproaches zero with zero variance. In addition, we provide a complete statistical characterization of ℳijby invoking the concept of minimum relative entropy, thus providing upper bounds on the uncertainty associated with ℳij.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3