Non-normality and internal flame dynamics in premixed flame–acoustic interaction

Author:

SUBRAMANIAN PRIYA,SUJITH R. I.

Abstract

This paper investigates the non-normal nature of premixed flame–acoustic interaction. The thermoacoustic system is modelled using the acoustic equations for momentum and energy, together with the equation for the evolution of the flame front obtained from the kinematicG-equation. As the unsteady heat addition acts as a volumetric source, the flame front is modelled as a distribution of monopole sources. Evolutions of the system are characterized with a measure of energy due to fluctuations. In addition to the acoustic energy, the energy due to fluctuations considered in the present paper accounts for the energy of the monopole sources. The linearized operator for this thermoacoustic system is non-normal, leading to non-orthogonality of its eigenvectors. Non-orthogonal eigenvectors can cause transient growth even when all the eigenvectors are decaying. Therefore, classical linear stability theory cannot predict the finite-time transient growth observed in non-normal systems. In the present model, the state space variables include the monopole source strengths in addition to the acoustic variables. Inclusion of these variables in the state space is essential to account for the transient growth due to non-normality. A parametric study of the variation in transient growth due to change in parameters such as flame location and flame angle is performed. In addition to projections along the acoustic variables of velocity and pressure, the optimal initial condition for the self-evolving system has significant projections along the strength of the monopole distribution. Comparison of linear and corresponding nonlinear evolutions highlights the role of transient growth in subcritical transition to instability. The notion of phase between acoustic pressure and heat release rate as an indicator of stability is examined.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3