Analysis of vortex populations in turbulent wall-bounded flows

Author:

GAO Q.,ORTIZ-DUEÑAS C.,LONGMIRE E. K.

Abstract

Vortical structures were identified and characterized using velocity fields of turbulent wall-bounded flows. Two direct numerical simulation data sets of fully developed channel flow at Reτ = 934 obtained by del Álamo et al. (J. Fluid Mech., vol. 500, 2004, p. 135) and Reτ = 590 obtained by Moser, Kim & Mansour (Phys. Fluids, vol. 11, 1999, p. 943) as well as dual-plane particle image velocimetry data at z+ = 110 in a zero-pressure-gradient turbulent boundary layer at Reτ = 1160 obtained by Ganapathisubramani, Longmire & Marusic (Phys. Fluids, vol. 18, 2006, 055105) were employed. The three-dimensional swirling strength based on the local velocity gradient tensor was employed to identify vortex core locations. The real eigenvector of the tensor was used both to refine the identification algorithm and to determine the orientation of each vortex core. The identification method allowed cores of nearly all orientations to be analysed. Circulation of each vortical structure was calculated using the vorticity vector projected onto the real eigenvector direction. Various population distributions were then computed at different wall-normal locations including core size, orientation, circulation and propagation velocity. The mean radius of the cores identified was found to increase with increasing wall-normal distance, and the mean circulation increases approximately quadratically with eddy radius. Orientations of cores with stronger circulation were distributed over a much narrower range than those for vortices with weaker circulation and were consistent with legs, necks and heads of forward-leaning hairpin structures.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3