Freely decaying, homogeneous turbulence generated by multi-scale grids

Author:

KROGSTAD P.-Å.,DAVIDSON P. A.

Abstract

We investigate wind-tunnel turbulence generated by both conventional and multi-scale grids. Measurements were made in a tunnel which has a large test section, so that possible side wall effects are very small and the length ensures that the turbulence has time to settle down to a homogeneous shear-free state. The conventional and multi-scale grids were all designed to produce turbulence with the same integral scale, so that a direct comparison could be made between the different flows. Our primary finding is that the behaviour of the turbulence behind our multi-scale grids is virtually identical to that behind the equivalent conventional grid. In particular, all flows exhibit a power-law decay of energy, u2 ~ tn, where n is very close to the classical Saffman exponent of n = 6/5. Moreover, all spectra exhibit classical Kolmogorov scaling, with the spectra collapsing on the integral scales at small k, and on the Kolmogorov microscales at large k. Our results are at odds with some other experiments performed on similar multi-scale grids, where significantly higher energy decay exponents and turbulence levels have been reported.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3