State estimation in wall-bounded flow systems. Part 3. The ensemble Kalman filter

Author:

COLBURN C. H.,CESSNA J. B.,BEWLEY T. R.

Abstract

State estimation of turbulent near-wall flows based on wall measurements is one of the key pacing items in model-based flow control, with low-Re channel flow providing the canonical testbed. Model-based control formulations in such settings are often separated into two subproblems: estimation of the near-wall flow state via skin friction and pressure measurements at the wall, and (based on this estimate) control of the near-wall flow field fluctuations via actuation of the fluid velocity at the wall. In our experience, the turbulent state estimation sub-problem has consistently proven to be the more difficult of the two. Though many estimation strategies have been tested on this problem (by our group and others), none have accurately captured the turbulent flow state at the outer boundary of the buffer layer (5 ≤ y+ ≤ 30), which is deemed to be an important milestone, as this is the approximate range of the characteristic near-wall turbulent structures, the accurate estimation of which is important for the control problem. Leveraging the ensemble Kalman filter (an effective variant of the Kalman filter which scales well to high-dimensional systems), the present paper achieves at least an order of magnitude improvement (in the near-wall region) over the best results available in the published literature on the estimation of low-Reynolds number turbulent channel flow based on wall information alone.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference41 articles.

1. Optimal and robust control and estimation of linear paths to transition

2. A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts

3. Butala M. D. , Yun J. , Chen Y. , Frazin R. A. & Kamalabadi F. 2008 Asymptotic convergence of the ensemble Kalman filter. In 15th IEEE International Conference on Image Processing, pp. 825–828.

4. Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3