Abstract
AbstractA librating cylinder consists of a rotating cylinder whose rate of rotation is modulated. When the mean rotation rate is large compared with the viscous damping rate, the flow may support inertial waves, depending on the frequency of the modulation. The modulation also produces time-dependent boundary layers on the cylinder endwalls and sidewall, and the sidewall boundary layer flow in particular is susceptible to instabilities which can introduce additional forcing on the interior flow with time scales different from the modulation period. These instabilities may also drive and/or modify the inertial waves. In this paper, we explore such flows numerically using a spectral-collocation code solving the Navier–Stokes equations in order to capture the dynamics involved in the interactions between the inertial waves and the viscous boundary layer flows.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献