Author:
Llewellyn Smith Stefan G.,Crowdy Darren G.
Abstract
AbstractThis paper considers the structure and linear stability of two-dimensional hollow vortex equilibria. Equilibrium solutions for a single hollow vortex in linear and nonlinear straining flows are derived in analytical form using free streamline theory. The linear stability properties of this solution class are then determined numerically and a new type of resonance-induced displacement instability is identified. It is found to be a consequence of the fact that one of the shape distortion modes of a circular hollow vortex has the same frequency as one of the modes corresponding to displacement of the vortex centroid. The instability is observed in the case of an isolated hollow vortex situated in straining flow of order three. We also revisit the hollow vortex row solution due to Baker, Saffman & Sheffield (J. Fluid Mech., vol. 74, 1976, p. 1469), and since it is currently lacking in the literature, we present a full linear stability analysis of this solution using Floquet analysis.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献