Clusters in dense-inertial granular flows

Author:

Campbell Charles S.

Abstract

AbstractIn the dense-inertial regime of granular flow, the stresses scale inertially, but the flow is dominated by clusters of particles. This paper describes observations of cluster development in this regime. Clusters were seen to form for both elastic and inelastic reasons: elastic when the shear rate pushes the particles together faster than the contacts can elastically disperse them, and inelastic as large energy dissipation leads to cluster formation. Furthermore, large particle surface friction leads to cluster formation both for structural reasons, because it generates stronger clusters, and for energetic reasons, as friction dissipates energy. However, the most intriguing result of this work is that clusters appear to have little effect on the rheology of the dense inertial regime, which suggests that one can model the dense inertial regime with entirely collisional hard sphere models, and not have to worry about the complexities of modelling clusters. But at the same time it presents a physical puzzle, as one would normally expect the rheology to be strongly dependent on microstructural features such as clusters, particularly as they present an elastic pathway for internal momentum transport. There is no completely satisfying explanation for why the clusters can be ignored, but two possibilities suggest themselves. Because the clusters are short-lived, it is possible that they do not survive long enough to make a significant contribution to the momentum transport. And it is also possible for the granular temperature that governs transport between clusters to act as a rate-limiting bottleneck that is in overall control of the momentum transport rate.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference20 articles.

1. A problem related to the stability of force chains

2. Versuche über Getreidedruck in Silozellen;Janssen;Zeitschrift des Vereines deutscher Ingenieure,1895

3. Rheophysics of dense granular materials: Discrete simulation of plane shear flows

4. Flow of dense granular material: towards simple constitutive laws;Pouliquen;J. Statist. Mech.: Theory and Experiment,2006

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3