Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows

Author:

Xi Li,Graham Michael D.

Abstract

AbstractMaximum drag reduction (MDR), the asymptotic upper limit of reduction in turbulent friction drag by polymer additives, is the most important unsolved problem in viscoelastic turbulence. Recent studies of turbulence in minimal flow units have identified time intervals showing key features of MDR. These intervals, denoted ‘hibernating turbulence’ are found in both Newtonian and viscoelastic flows. The present study provides a comprehensive examination of this turbulence hibernation phenomenon in the minimal channel geometry, and discusses its impact on the turbulent dynamics and drag reduction. Similarities between hibernating turbulence and MDR are established in terms of both flow statistics (an intermittency factor, mean and fluctuating components of velocity) and flow structure (weak vortices and nearly streamwise-invariant kinematics). Hibernation occurs more frequently at high levels of viscoelasticity, leading to flows that increasingly resemble MDR. Viscoelasticity facilitates the occurrence of hibernation by suppressing the conventional ‘active’ turbulence, but has little influence on hibernation itself. At low Weissenberg number $\mathit{Wi}$, the average duration of active turbulence intervals is constant, but above a critical value of $\mathit{Wi}$, the duration decreases dramatically, and accordingly, the fraction of time spent in hibernation increases. This observation can be explained with a simple mathematical model that posits that the lifetime of an active turbulence interval is the time that it takes for the turbulence to stretch polymer molecules to a certain threshold value; once the molecules exceed this threshold, they exert a large enough stress on the flow to suppress the active turbulence. This model predicts an explicit form for the duration as a function of $\mathit{Wi}$ and the simulation results match this prediction very closely. The critical point where hibernation frequency becomes substantially increased coincides with the point where qualitative changes are observed in overall flow statistics – the transition between ‘low-drag-reduction’ and ‘high-drag-reduction’ regimes. Probability density functions of important variables reveal a much higher level of intermittency in the turbulent dynamics after this transition. It is further confirmed that hibernating turbulence is a Newtonian structure during which polymer extension is small. Based on these results, a framework is proposed that explains key transitions in viscoelastic turbulence, especially the convergence toward MDR.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference84 articles.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3