Fokker–Planck model for computational studies of monatomic rarefied gas flows

Author:

GORJI M. H.,TORRILHON M.,JENNY P.

Abstract

In this study, we propose a non-linear continuous stochastic velocity process for simulations of monatomic gas flows. The model equation is derived from a Fokker–Planck approximation of the Boltzmann equation. By introducing a cubic non-linear drift term, the model leads to the correct Prandtl number of 2/3 for monatomic gas, which is crucial to study heat transport phenomena. Moreover, a highly accurate scheme to evolve the computational particles in velocity- and physical space is devised. An important property of this integration scheme is that it ensures energy conservation and honours the tortuosity of particle trajectories. Especially in situations with small to moderate Knudsen numbers, this allows to proceed with much larger time steps than with direct simulation Monte Carlo (DSMC), i.e. the mean collision time not necessarily has to be resolved, and thus leads to more efficient simulations. Another computational advantage is that no direct collisions have to be calculated in the proposed algorithm. For validation, different micro-channel flow test cases in the near continuum and transitional regimes were considered. Detailed comparisons with DSMC for Knudsen numbers between 0.07 and 2 reveal that the new solution algorithm based on the Fokker–Planck approximation for the collision operator can accurately predict molecular stresses and heat flux and thus also gas velocity and temperature profiles. Moreover, for the Knudsen Paradox, it is shown that good agreement with DSMC is achieved up to a Knudsen number of about 5.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3