Author:
Bober David B.,Chen Chuan-Hua
Abstract
AbstractPulsating cone-jets occur in a variety of electrostatic spraying and printing systems. This paper reports an experimental study of the pulsation frequency to reconcile two models based on a choked jet and an oscillating cone, respectively. The two regimes are demarcated by the ratio of the supplied flow rate (${Q}_{s} $) to the minimum flow rate (${Q}_{m} $) required for a steady Taylor cone-jet. When ${Q}_{s} \lesssim {Q}_{m} $, the electrohydrodynamic flow is choked at the nozzle because the intermittent jet, when on, emits mass at the minimum flow rate; the pulsation frequency in the choked jet regime is proportional to ${Q}_{s} / {Q}_{m} $. When ${Q}_{s} \gtrsim {Q}_{m} $, the Taylor cone anchored at the nozzle experiences a capillary oscillation analogous to the Rayleigh mode of a free drop; the pulsation frequency in the oscillating cone regime plateaus to the capillary oscillation frequency, which is independent of ${Q}_{s} / {Q}_{m} $.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献