Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction

Author:

KAMETANI YUKINORI,FUKAGATA KOJI

Abstract

Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to be 3000. A constant wall-normal velocity is applied on the wall in the range, −0.01UVctr ≤ 0.01U. The DNS results show that UB reduces the skin friction drag, while US increases it. The turbulent fluctuations exhibit the opposite trend: UB enhances the turbulence, while US suppresses it. Dynamical decomposition of the local skin friction coefficient cf using the identity equation (FIK identity) (Fukagata, Iwamoto & Kasagi, Phys. Fluids, vol. 14, 2002, pp. L73–L76) reveals that the mean convection term in UB case works as a strong drag reduction factor, while that in US case works as a strong drag augmentation factor: in both cases, the contribution of mean convection on the friction drag overwhelms the turbulent contribution. It is also found that the control efficiency of UB is much higher than that of the advanced active control methods proposed for channel flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3