Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow

Author:

van der A Dominic A.,O’Donoghue Tom,Davies Alan G.,Ribberink Jan S.

Abstract

AbstractExperiments have been conducted in a large oscillatory flow tunnel to investigate the effects of acceleration skewness on oscillatory boundary layer flow over fixed beds. As well as enabling experimental investigation of the effects of acceleration skewness, the new experiments add substantially to the relatively few existing detailed experimental datasets for oscillatory boundary layer flow conditions that correspond to full-scale sea wave conditions. Two types of bed roughness and a range of high-Reynolds-number, $\mathit{Re}\ensuremath{\sim} O(1{0}^{6} )$, oscillatory flow conditions, varying from sinusoidal to highly acceleration-skewed, are considered. Results show the structure of the intra-wave velocity profile, the time-averaged residual flow and boundary layer thickness for varying degrees of acceleration skewness, $\ensuremath{\beta} $. Turbulence intensity measurements from particle image velocimetry (PIV) and laser Doppler anemometry (LDA) show very good agreement. Turbulence intensity and Reynolds stress increase as the flow accelerates after flow reversal, are maximum at around maximum free-stream velocity and decay as the flow decelerates. The intra-wave turbulence depends strongly on $\ensuremath{\beta} $ but period-averaged turbulent quantities are largely independent of $\ensuremath{\beta} $. There is generally good agreement between bed shear stress estimates obtained using the log-law and using the momentum integral equation, and flow acceleration skewness leads to high bed shear stress asymmetry between flow half-cycles. Turbulent Reynolds stress is much less than the shear stress obtained from the momentum integral; analysis of the stress contributors shows that significant phase-averaged vertical velocities exist near the bed throughout the flow cycle, which lead to an additional shear stress, $\ensuremath{-} \rho \tilde {u} \tilde {w} $; near the bed this stress is at least as large as the turbulent Reynolds stress.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3