Fluxes across double-diffusive interfaces: a one-dimensional-turbulence study

Author:

GONZALEZ-JUEZ ESTEBAN,KERSTEIN ALAN R.,LIGNELL DAVID O.

Abstract

This work is a parametric study of the fluxes of heat and salt across unsheared and sheared double-diffusive interfaces using one-dimensional-turbulence (ODT) simulations. It is motivated by the need to understand how these fluxes scale with parameters related to the fluid molecular properties and background shear. Comparisons are made throughout with previous models and available measurements. In unsheared interfaces, ODT simulations show that the dimensionless heat fluxNuscales with the stability parameterRρ, Rayleigh numberRaand Prandtl numberPrasNu~ (Ra/Rρ)0.37±0.03whenPrvaries from 3 to 100 and asNu~ (Ra/Rρ)0.31Pr0.22±0.04whenPrvaries from 0.01 to 1. HereRa/Rρcan be seen as the ratio of destabilizing and stabilizing effects. The simulation results also indicate that the ratio of salt and heat fluxesRfis independent ofPr, scales with the Lewis numberLeasRf~Le0.41±0.04whenRρis large enough and deviates from this expression for low values ofRρ, when the interface becomes heavily eroded. In sheared interfaces, the simulations show three flow regimes. When the Richardson numberRi≪ 1, shear-induced mixing dominates, the heat flux scales with the horizontal velocity difference across the interface andRf=Rρ. NearRi~ 1 the heat and salt fluxes are seen to increase abruptly as the shear increases. The flow structure and scaling of the fluxes are similar to those of unsheared interfaces whenRi≫ 1.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3