Author:
Mehaddi Rabah,Vauquelin Olivier,Candelier Fabien
Abstract
AbstractThis paper theoretically investigates the initial up-flow of a vertical turbulent fountain (round or plane) in a linearly stratified environment. Conservation equations (volume, momentum and buoyancy) are written under the Boussinesq approximation assuming an entrainment proportional to the vertical velocity of the fountain. Analytical integration leads to exact values of both density and flow rate at the maximal height reached by the fountain. This maximal height is expressed as a function of the release conditions and the stratification strength and plotted from a numerical integration in order to exhibit overall behaviour. Then, analytical expressions for the maximal height are derived from asymptotic analysis and compared to experimental correlations available for forced fountains. For weak fountains, these analytical expressions constitute a new theoretical model. Finally, modified expressions are also proposed in the singular case of an initially non-buoyant vertical release.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献