Buckling of a thin-layer Couette flow

Author:

Slim Anja C.,Teichman Jeremy,Mahadevan L.

Abstract

AbstractWe analyse the buckling stability of a thin, viscous sheet when subject to simple shear, providing conditions for the onset of the dominant out-of-plane modes using two models: (i) an asymptotic theory for the dynamics of a viscous plate, and (ii) the full Stokes equations. In either case, the plate is stabilized by a combination of viscous resistance, surface tension and buoyancy relative to an underlying denser fluid. In the limit of vanishing thickness, plates buckle at a shear rate $\gamma / (\ensuremath{\mu} d)$ independent of buoyancy, where $2d$ is the plate thickness, $\gamma $ is the average surface tension between the upper and lower surfaces, and $\ensuremath{\mu} $ is the fluid viscosity. For thicker plates stabilized by an equal surface tension at the upper and lower surfaces, at and above onset, the most unstable mode has moderate wavelength, is stationary in the frame of the centreline, spans the width of the plate with crests and troughs aligned at approximately $4{5}^{\ensuremath{\circ} } $ to the walls, and closely resembles elastic shear modes. The thickest plates that can buckle have an aspect ratio (thickness/width) of approximately 0.6 and are stabilized only by internal viscous resistance. We show that the viscous plate model can only accurately describe the onset of buckling for vanishingly thin plates but provides an excellent description of the most unstable mode above onset. Finally, we show that, by modifying the plate model to incorporate advection and make the model material-frame-invariant, it is possible to extend its predictive power to describe relatively short, travelling waves.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. Models for thin viscous sheets;Howell;Eur. J. Appl. Maths,1996

2. 10. Howell P. D. 1994 Extensional thin layer flows. PhD thesis, Oxford University.

3. Spectral Methods

4. Why subduction zones are curved

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soap film catastrophes;Journal of Fluid Mechanics;2021-09-06

2. Arctic soil patterns analogous to fluid instabilities;Proceedings of the National Academy of Sciences;2021-05-21

3. Treatment of ice-shelf evolution combining flow and flexure;Journal of Glaciology;2021-04-21

4. Viscoelastic ribbons;Journal of Fluid Mechanics;2020-12-03

5. 3D Viscoelastic Simulation of Jetting in Injection Molding;Polymer Engineering & Science;2019-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3