Experiments and modelling of premixed laminar stagnation flame hydrodynamics

Author:

BERGTHORSON JEFFREY M.,SALUSBURY SEAN D.,DIMOTAKIS PAUL E.

Abstract

The hydrodynamics of a reacting impinging laminar jet, or stagnation flame, is studied experimentally and modelled using large activation energy asymptotic models and numerical simulations. The jet-wall geometry yields a stable, steady flame and allows for precise measurement and specification of all boundary conditions on the flow. Laser diagnostic techniques are used to measure velocity and CH radical profiles. The axial velocity profile through a premixed stagnation flame is found to be independent of the nozzle-to-wall separation distance at a fixed nozzle pressure drop, in accord with results for non-reacting impinging laminar jet flows, and thus the strain rate in these flames is only a function of the pressure drop across the nozzle. The relative agreement between the numerical simulations and experiment using a particular combustion chemistry model is found to be insensitive to both the strain rate imposed on the flame and the relative amounts of oxygen and nitrogen in the premixed gas, when the velocity boundary conditions on the simulations are applied in a manner consistent with the formulation of the streamfunction hydrodynamic model. The analytical model predicts unburned, or reference, flame speeds that are slightly lower than the detailed numerical simulations in all cases and the observed dependence of this reference flame speed on strain rate is stronger than that predicted by the model. Experiment and simulation are in excellent agreement for near-stoichiometric methane–air flames, but deviations are observed for ethylene flames with several of the combustion models used. The discrepancies between simulation and experimental profiles are quantified in terms of differences between measured and predicted reference flame speeds, or position of the CH-profile maxima, which are shown to be directly correlated. The direct comparison of the measured and simulated reference flame speeds, ΔSu, can be used to infer the difference between the predicted flame speed of the combustion model employed and the true laminar flame speed of the mixture, ΔSOf, i.e. ΔSuSOf, consistent with recently proposed nonlinear extrapolation techniques.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3