Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory

Author:

Yariv Ehud,Schnitzer Ory,Frankel Itzchak

Abstract

AbstractElectrokinetic streaming-potential phenomena are driven by imposed relative motion between liquid electrolytes and charged solids. Owing to non-uniform convective ‘surface’ current within the Debye layer Ohmic currents from the electro-neutral bulk are required to ensure charge conservation thereby inducing a bulk electric field. This, in turn, results in electro-viscous drag enhancement. The appropriate modelling of these phenomena in the limit of thin Debye layers $\delta \ensuremath{\rightarrow} 0$ ($\delta $ denoting the dimensionless Debye thickness) has been a matter of ongoing controversy apparently settled by Cox’s seminal analysis (J. Fluid Mech., vol. 338, 1997, p. 1). This analysis predicts electro-viscous forces that scale as ${\delta }^{4} $ resulting from the perturbation of the original Stokes flow with the Maxwell-stress contribution only appearing at higher orders. Using scaling analysis we clarify the distinction between the normalizations pertinent to field- and motion-driven electrokinetic phenomena, respectively. In the latter class we demonstrate that the product of the Hartmann & Péclet numbers is $O({\delta }^{\ensuremath{-} 2} )$ contrary to Cox (1997) where both parameters are assumed $O(1)$. We focus on the case where motion-induced fields are comparable to the thermal scale and accordingly present a singular-perturbation analysis for the limit where the Hartmann number is $O(1)$ and the Péclet number is $O({\delta }^{\ensuremath{-} 2} )$. Electric-current matching between the Debye layer and the electro-neutral bulk provides an inhomogeneous Neumann condition governing the electric field in the latter. This field, in turn, results in a velocity perturbation generated by a Smoluchowski-type slip condition. Owing to the dominant convection, the present analysis yields an asymptotic structure considerably simpler than that of Cox (1997): the electro-viscous effect now already appears at $O({\delta }^{2} )$ and is contributed by both Maxwell and viscous stresses. The present paradigm is illustrated for the prototypic problem of a sphere sedimenting in an unbounded fluid domain with the resulting drag correction differing from that calculated by Cox (1997). Independently of current matching, salt-flux matching between the Debye layer and the bulk domain needs also to be satisfied. This subtle point has apparently gone unnoticed in the literature, perhaps because it is trivially satisfied in field-driven problems. In the present limit this requirement seems incompatible with the uniform salt distribution in the convection-dominated bulk domain. This paradox is resolved by identifying the dual singularity associated with the limit $\delta \ensuremath{\rightarrow} 0$ in motion-driven problems resulting in a diffusive layer of $O({\delta }^{2/ 3} )$ thickness beyond the familiar $O(\delta )$-wide Debye layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3